顔認証の40%以上を突破するAI技術で判別不能なスッピンを思い出す

技術の進歩って凄いですね。セキュリティな切り口えで考えれば脆弱性となるのでしょうが、何か応用が出来ないのかなぁ…と興味があります。面白いですね。

顔認証の40%以上をたった9つの顔で突破するマスターキーならぬ「マスターフェイス」を作るAIが登場:Gigazine

AIはまず、広範な顔データに含まれる「最も一般化された特徴」を見つけ出し、可能な限り多くの顔になりすませる顔を生成します。次に、最初に生成した顔では突破できなかった顔データを相手にして、可能な限り多くの顔になりすませる新たな顔を生成。このプロセスを繰り返すことで、少数の顔でより多くの顔認証を突破できるようになる仕組みです。
以下の画像は、さまざまな手法でAIの精度を変更しつつ、SphereFace(a・d・g)、FaceNet(b・e・h)、Dlib(c・f・i)でテストを行った結果です。生成される顔はさまざまですが、全体的に「最初に生成される(最も多くの顔認証を突破できる)顔は白人の高齢男性」「続いて生成されるのはアジア系の男性や白人の高齢女性が多い」「5番目以降に黒人の顔が登場する」といった傾向が見られます。この傾向は、LFWに含まれる顔の種類を反映している可能性があります。

顔認証ってスマホやPCで使ってますが、指紋と違って誤認識がないので便利です。指紋は指が荒れていたりすると反応が悪くなったりするので…しかしコロナ禍でアルコール消毒の回数が以前よりも半端なく増えましたが、意外と荒れてないです。何か荒れにくいもの入っているのですかね?

ディープフェイクの技術は見る人を騙すものですよね。

Gigazineにも、超リアルなAI製ニセ画像「ディープフェイク」を作成したAIモデルの特定技術をFacebookが発表ディープフェイクで合成された顔を見分ける鍵は「目の輝き」な記事がありました。

以前、まだ顔認証もない頃、あいつ誰だ?と誰もわからなかった事例がありました。休日にスッピンで会社に来るから…と言っても5人くらい居た記憶がありますが、全員がわからないという人による顔認証も突破し、映像じゃないのに今思えばディープフェイクだったかも?と思うほどの事案を思い出しました。ある意味セキュリティ的には最強であるかもと。

セキュリティはいたちごっこと言われますが、こういう方法が見つかると認証のポイントも強化され、こういう方法も使えなくなるの繰り返し。

面白そうだと興味をもったものや日常の中も、セキュリティ思考に応用出来るヒントは多くありそうです。

現状の情報セキュリティ教育研修をそのまま続けて大丈夫ですか?

ほとんどの企業において、情報セキュリティ教育のコンテンツは一巡しています。新たに知るべく脅威などもありますが、ほぼ新しいコンテンツはありません。

技術者の方々は、常に最新の動向を知る必要があります。しかし、一般社員の方々が知るべくことは技術者の方々とは内容が違います。

一般社員の方々に向けた「情報セキュリティ」に必要なことは、ほぼ伝えきられたと考えます。
現在行われているのは、二巡、三巡の繰り返しです。同じことを反復練習していても情報漏洩事故は減少していません。